Τμήμα Φυσικής - Πανεπιστήμιο Κρήτης

Περιεχόμενο του μαθήματος

Τα πειράµατα τα οποία τελούνται ανά οµάδες των 2 ατόµων είναι:

  • Τεχνικές κενού: Περιγραφή συστηµάτων κενού. Αρχή λειτουργίας µηχανικής αντλίας και αντ λίας διαχύσεως. Όργανα µέτρησης κενού (µετρητής Pirani και µετρητής Penning). Ταχύτητα άντλησης. Αγωγιµότητα σωληνώσεων (για ιξώδη και µοριακή ροή). Τελική ταχύτητα εκκένωσης. Διαρροές και αντιµετώπιση.

  • Σιδηροµαγνητική υστέρηση: Μαγνητικό δίπολο και µαγνητική διπολική ροπή. Παραµαγνητισµός, διαµαγνητισµός, σιδηροµαγνητισµός και θερµοκρασία Curie. Νόµος του Ampere. Σχετική µαγνητική διαπερατότητα και µαγνητική διαπερατότητα του κενού. Επαγόµενο πεδίο και συνετικό πεδίο.

  • Φαινόµενο Hall: Δύναµη Lorentz. Tάση Hall. Συντελεστής Hall σε αγωγούς και ηµιαγωγούς (µε ένα ή δύο είδη φορέων). Ευκινησία φορέων. Χρήση του φαινοµένου Hall για την µέτρηση χαρακτηριστικών µεγεθών ηµιαγωγών (είδος, πυκνότητα και ευκινησία φορέων). Μαγνητοαντίσταση. Κβαντικό φαινόµενο Hall.

  • Πείραµα Frank - Hertz: Περιγραφή του ατόµου κατά Bohr. – Γιατί η µεταφορά ενέργειας στα άτοµα γίνεται κατά διακεκριµένα, ασυνεχή ποσά. Περί κβαντωµένων ενεργειακών σταθµών. Κίνηση ελευθέρου ηλεκτρονίου µεταξύ δύο σηµείων µε σταθερή διαφορά δυναµικού. Δυναµικό ιονισµού. Από τι εξαρτάται η πίεση ατµών του Hg. Γιατί πρέπει πρώτα να θερµάνουµε την λυχνία Hg, πριν εφαρµόσουµε τάσεις στα πλέγµατα και νήµατα της λυχνίας.

  • Φωτοηλεκτρικό φαινόµενο: Φωτοηλεκτρικό φαινόµενο, σωµατιδιακή – κυµατική φύση του φωτός, σταθερά του Planck. Φάσµα εκποµπής ατόµων. Κατανόηση πειραµατικής διάταξης, φωτοδίοδος, φράγµα περίθλασης, φασµατοσκόπιο.

  • Φαινόµενο Zeeman: Tι είναι και που οφείλεται το φαινόµενο Zeeman. Έννοιες spin και συνισταµένης µαγνητικής ροπής ατόµου. Κβαντικοί αριθµοί, παράγοντας Lande g, σύζευξη ατοµικών στροφορµών. Σηµασία του φαινοµένου Zeeman στην φασµατοσκοπία. Κατανόηση της πειραµατικής διάταξης. Ανώµαλο φαινόµενο Zeeman και φαινόµενο Paschen-Bach.

  • Μοριακή φασµατοσκοπία: Φάµα απορρόφησης Ι2: Δοµή διατοµικών οµοπυρηνικών µορίων. Προσέγγιση Born – Oppenheimer. – Hλεκτρονικές, δονητικές, περιστροφικές καταστάσεις. Μεταβάσεις απορρόφησης, αρχή Franck– Condon. Κατανοµή πληθυσµών στα δονητικά επίπεδα της θεµελιώδους ηλεκτρονικής κατάστασης. Ένταση γραµµών φάσµατος απορρόφησης. Μονοχρωµάτορας, οπτικό φράγµα, φωτοπολλαπλασιαστής, καταγραφικό.

  • Φασµατοσκοπία ακτίνων: Εκποµπή ακτίνων Χ από λυχνία µετάλλου. Απορρόφηση ακτίνων Χ από µέταλλα, συντελεστής απορρόφησης. Φωτοηλεκτρική απορρόφηση, σκέδαση Compton, δίδυµη γένεση. Σκέδασης Bragg. Σταθερά πλέµγατος. Φασµατογράφος ακτίνων Χ, ανιχνευτής Geiger – Muller.

  • Ανιχνευτές ακτινοβολιών Ι: Ακτινοβολίες α, β, γ. Αλληλεπίδραση ακτινοβολίας µε την ύλη. Φωτοηλεκτρικό φαινόµενο, φαινόµενο Compton, δίδυµη γένεση. Αρχή λειτουργίας σπινθηριστή. Φασµατοσκοπία ακτινοβολίας γ. Ενεργειακό φάσµα διάσπασης 60Co, 22Νa, 137Cs. – Φωτοπολλαπλασιαστής, πολυαναλύτης, ανάλυση ύψους παλµού. Διακριτική ικανότητα. Στατιστικός χαρακτήρας πυρηνικών διασπάσεων, κατανοµή Poisson, σφάλµα µέτρησης ρυθµού πυρηνικών διασπάσεων.

  • Ανιχνευτές ακτινοβολιών ΙΙ: Αρχή λειτουργίας ανιχνευτή Geiger – Muller, απόδοση και νεκρός χρόνος του ανιχνευτή. Νόµος απορρόφησης ακτινοβολίας, συντελεστής απορρόφησης, συντελεστής απορρόφησης µάζας. Νόµος διάσπασης, µέσος χρόνος ζωής, χρόνος υποδιπλασιασµού ενεργότητας ραδιενεργού ισοτόπου. Στατιστικός χαρακτήρας πυρηνικών διασπάσεωνδιασπάσεων.